USER MANUAL # INVERTER / CHARGER 7.2KW/8.2KW/10.2KW ## **Table Of Contents** | ABOUT THIS MANUAL | 1 | |---|-----| | Purpose | | | Scope | | | SAFETY INSTRUCTIONS | 1 | | INTRODUCTION | | | | | | Features | | | Basic System Architecture | | | Product Overview | | | INSTALLATION | 4 | | Unpacking and Inspection | 4 | | Preparation | | | Mounting the Unit | | | Battery Connection | | | AC Input/Output Connection | | | Final Assembly | | | | _ | | OPERATION | - | | Power ON/OFF | | | Operation and Display Panel | | | LCD Display Icons | | | LCD Setting Display Setting | | | Battery Equalization Description | | | Fault Reference Code | | | | | | SPECIFICATIONS | 24 | | Table 1 Line Mode Specifications | 24 | | Table 2 Inverter Mode Specifications | | | Table 3 Two Load Output Power | | | Table 4 Charge Mode Specifications | | | Table 6 Constal Specifications | | | Table 6 General Specifications | | | TROUBLE SHOOTING | 27 | | Appendix: Approximate Back -up Time Table | 0.0 | #### **ABOUT THIS MANUAL** #### **Purpose** This manual describes the assembly, installation, operation and troubleshooting of this unit. Please read this manual carefully before installations and operations. Keep this manual for future reference. #### **Scope** This manual provides safety and installation guidelines as well as information on tools and wiring. #### **SAFETY INSTRUCTIONS** WARNING: This chapter contains important safety and operating instructions. Read and keep this manual for future reference. - Before using the unit, read all instructions and cautionary markings on the unit, the batteries and all appropriate sections of this manual. - CAUTION --To reduce risk of injury, charge only deep-cycle lead acid type rechargeable batteries.Other types of batteries may burst, causing personal injury and damage. - Do not disassemble the unit. Take it to a qualified service center when service or repair is required.Incorrect re-assembly may result in a risk of electric shock or fire. - To reduce risk of electric shock, disconnect all wirings before attempting any maintenance or cleaning. Turning off the unit will not reduce this risk. - 5. **CAUTION** Only qualified personnel can install this device with battery. - 6. **NEVER** charge a frozen battery. - For optimum operation of this inverter/charger, please follow required spec to select appropriate cable size. It's very important to correctly operate this inverter/charger. - 8. Be very cautious when working with metal tools on or around batteries. A potential risk exists to drop a tool to spark or short circuit batteries or other electrical parts and could cause an explosion. - Please strictly follow installation procedure when you want to disconnect AC or DC terminals. Please refer to INSTALLATION section of this manual for the details. - 10. One piece of 150A fuse is provided as over-current protection for the battery supply. - 11. GROUNDING INSTRUCTIONS -This inverter/charger should be connected to a permanent grounded wiring system. Be sure to comply with local requirements and regulation to install this inverter. - 12. NEVER cause AC output and DC input short circuited. Do NOT connect to the mains when DC input short circuits - 13. Warning!! Only qualified service persons are able to service this device. If errors still persist after following troubleshooting table, please send this inverter/charger back to local dealer or service center for maintenance. ### INTRODUCTION This is a multi-function inverter/charger, combining functions of inverter, solar charger and battery charger to offer uninterruptible power support with portable size. Its comprehensive LCD display offers user-configurable and easy-accessible button operation such as battery charging current, AC/solar charger priority, and acceptable input voltage based on different applications. #### **Features** - Pure sine wave inverter - · Inverter running without battery - · Configurable input voltage range for home appliances and personal computers via LCD setting - Configurable battery charging current based on applications via LCD setting - Configurable AC/Solar Charger priority via LCD setting - · Compatible to mains voltage or generator power - · Auto restart while AC is recovering - Overload/ Over temperature/ short circuit protection - Smart battery charger design for optimized battery performance - · Cold start function #### **Basic System Architecture** The following illustration shows basic application for this inverter/charger. It also includes following devices to have a complete running system: - · Generator or Utility. - · PV modules Consult with your system integrator for other possible system architectures depending on your requirements. This inverter can power all kinds of appliances in home or office environment, including motor-type appliances such as tube light, fan, refrigerator and air conditioner. Figure 1 Hybrid Power System #### **Product Overview** - 1. Power on/off switch - 2. AC input - 3. AC ouput - 4. Second output - 5. PV1 and Pv2 input - 6. GND - 7. Communication port - 8. Battery input #### **INSTALLATION** #### **Unpacking and Inspection** Before installation, please inspect the unit. Be sure that nothing inside the package is damaged. You should have received the following items inside of package: - The unit x 1 - User manual x 1 - Dust cover (optional) - Mc4 terminal head x 2 #### **Preparation** Before connecting all wirings, please take off bottom cover by removing two screws as shown below. #### **Mounting the Unit** Consider the following points before selecting where to install: - Do not mount the inverter on flammable construction materials. - Mount on a solid surface - Install this inverter at eye level in order to allow the LCD display to be read at all times. - For proper air circulation to dissipate heat, allow a clearance of approx. 20 cm to the side and approx. 50 cm above and below the unit. - The ambient temperature should be between 0°C and 55°C to ensure optimal operation. - The recommended installation position is to be adhered to the wall vertically. - Be sure to keep other objects and surfaces as shown in the diagram to guarantee sufficient heat dissipation and to have enough space for removing wires. SUITABLE FOR MOUNTING ON CONCRETE OR OTHER NON-COMBUSTIBLE SURFACE ONLY. Install the unit by screwing two screws. It's recommended to use M4 or M5 screws. #### **Battery Connection** This model can be operated without battery connection. Connect to battery if necessary. **CAUTION:** For safety operation and regulation compliance, it's requested to install a separate DC over-current protector or disconnect device between battery and inverter. It may not be requested to have a disconnect device in some applications, however, it's still requested to have over-current protection installed. Please refer to typical amperage in below table as required fuse or breaker size. **WARNING!** All wiring must be performed by a qualified personnel. **WARNING!** It's very important for system safety and efficient operation to use appropriate cable for battery connection. To reduce risk of injury, please use the proper recommended cable as below. #### Recommended battery cable size: | Model | Wire Size | Cable (mm²) | Torque value (max) | |--------------------|-----------|-------------|----------------------| | 7.2KW/8.2KW/10.2KW | 1 x 2AWG | 25 | 2 Nm | Please follow below steps to implement battery connection: - 1. Remove insulation sleeve 18 mm for positive and negative conductors. - Suggest to put bootlace ferrules on the end of positive and negative wires with a proper crimping tool. - 3. Connect all battery packs as below chart. 4. Insert the battery wires flatly into battery connectors of inverter and make sure the bolts are tightened with torque of 2 Nm in clockwise direction. Make sure polarity at both the battery and the inverter/charge is correctly connected and conductors are tightly screwed into the battery terminals. Recommended tool: #2 Pozi Screwdriver #### **WARNING: Shock Hazard** Installation must be performed with care due to high battery voltage in series. **CAUTION!!** Before making the final DC connection or closing DC breaker/disconnector, be sure positive (+) must be connected to positive (+) and negative (-) must be connected to negative (-). #### **Communication Port** | Pin on Rj45 | Description | |-------------|-------------| | 1 | RS485-A | | 2 | RS485-B | | 8 | GND | #### **AC Input/Output Connection** **CAUTION!!** Before connecting to AC input power source, please install a **separate** AC breaker between inverter and AC input power source. This will ensure the inverter can be securely disconnected during maintenance and fully protected from over current of AC input. The recommended spec of AC breaker is 63A for 7.2KW/8.2KW/10.2KW. **CAUTION!!** There are two terminal blocks with "IN" and "OUT" markings. Please do NOT mis-connect input and output connectors. **WARNING!** All wiring must be performed by a qualified personnel. **WARNING!** It's very important for system safety and efficient operation to use appropriate cable for AC input connection. To reduce risk of injury, please use the proper recommended cable size as below. #### Suggested cable requirement for AC wires | Model | Gauge | Cable (mm²) | Torque Value | |--------------------|--------|-------------|--------------| | 7.2KW/8.2KW/10.2KW | 10 AWG | 6 | 1.2 Nm | Please follow below steps to implement AC input/output connection: - 1. Before making AC input/output connection, be sure to open DC protector or disconnector first. - 2. Remove insulation sleeve 10mm for six conductors. And shorten phase L and neutral conductor N 3 mm. Insert AC input wires according to polarities indicated on terminal block and tighten the terminal screws. Be sure to connect PE protective conductor () first. Ground (yellow-green) L→LINE (brown or black) N→Neutral (blue) #### **WARNING:** Be sure that AC power source is disconnected before attempting to hardwire it to the unit. 4. Then, insert AC output wires according to polarities indicated on terminal block and tighten terminal screws. L→LINE (brown or black) N→Neutral (blue) 5. Make sure the wires are securely connected. **CAUTION:** Appliances such as air conditioner are required at least $2\sim3$ minutes to restart because it's required to have enough time to balance refrigerant gas inside of circuits. If a power shortage occurs and recovers in a short time, it will cause damage to your connected appliances. To prevent this kind of damage, please check manufacturer of air conditioner if it's equipped with time-delay function before installation. Otherwise, this inverter/charger will trig overload fault and cut off output to protect your appliance but sometimes it still causes internal damage to the air conditioner. #### **PV Connection** **CAUTION:** Before connecting to PV modules, please install **separately** a DC circuit breaker between inverter and PV modules. **WARNING!** It's very important for system safety and efficient operation to use appropriate cable for PV module connection. To reduce risk of injury, please use the proper recommended cable size as below. | Model | Wire Size | Cable (mm²) | Torque value (max) | |--------------------|-----------|-------------|--------------------| | 7.2KW/8.2KW/10.2KW | 1 x 10AWG | 6 | 1.2 Nm | #### **PV Module Selection:** When selecting proper PV modules, please be sure to consider below parameters: - 1. Open circuit Voltage (Voc) of PV modules not exceeds max. PV array open circuit voltage of inverter. - 2. Open circuit Voltage (Voc) of PV modules should be higher than min. battery voltage. | INVERTER MODEL | 7.2KW | 8.2KW | 10.2KW | |------------------------------------|--------------|-------|--------| | Max. PV Array Open Circuit Voltage | 500Vdc | | | | PV Array MPPT Voltage Range | 90Vdc~450Vdc | | | Take 250Wp PV module as an example. After considering above two parameters, the recommended module configurations are listed as below table. | Solar Panel Spec. | SOLAR INPUT | Oltre of manala | Total input | |---------------------|--|-----------------|-------------| | (reference) - 250Wp | (Min in serial: 6 pcs, max. in serial: 13 pcs) | Q'ty of panels | power | | - Vmp: 30.1Vdc | 6 pcs in serial | 6 pcs | 1500W | | - Imp: 8.3A | 8 pcs in serial | 8 pcs | 2000W | | - Voc: 37.7Vdc | 12 pcs in serial | 12 pcs | 3000W | | - Isc: 8.4A | 13 pcs in serial | 13 pcs | 3250W | | - Cells: 60 | 12 pieces in serial and 3 sets in parallel | 36 pcs | 8200W | | | 10 pieces in serial and 4 sets in parallel | 40 pcs | 10200W | #### **PV Module Wire Connection** Step 1: Check the input voltage of PV array modules, The acceptable input voltage of the inverter is 120VDC-500VDC. Please make sure that the maximum current load of each PV input connector is 10A. **CAUTION:** Exceeding the maximum input voltage can destroy the unit!! Check the system before wire connection. Step 2: Disconnect the DC circuit breaker. Step 3: Assemble provided PV connectors with PV modules by the following below steps. #### **Components for Py connectors and Tools:** | Female connector housing | Male terminal | | |--------------------------|-------------------------------|-----| | Female terminal |
Crimping tool and spanner | 2-3 | | Male connector housing | | | #### Cable preparation and connector assembly process: Strip one cable 8 mm on both end sides and be careful NOT to nick conductors. Insert striped cable into female terminal and crimp female terminal as shown below charts. Insert assembled cable into female connector housing as shown below charts. Insert striped cable into male terminal and crimp male terminal as shown below charts. Insert assembled cable into male connector housing as shown below charts. Then, use spanner to screw pressure dome tightly to female connector and male connector as shown below. Step 4: Check correct polarity of connection cable from PV modules and PV input connectors, Then, connect positive pole (+) of connection cable to positive pole (+) of PV input connector, Connect negative pole (-) of connection cable to negative pole (-) of PV input connector. ## **Final Assembly** After connecting all wirings, please put bottom cover back by screwing two screws as shown below. 8 ## RGB Light(option) LCD Parameter Sheet(Note:91-98 only for RGB light). #### **OPERATION** ## Power ON/OFF Once the unit has been properly installed and the batteries are connected well, simply press On/Off switch (located on the button of the case) to turn on the unit. #### **Operation and Display Panel** The operation and display panel, shown in below chart, is on the front panel of the inverter. It includes three indicators, four function keys and a LCD display, indicating the operating status and input/output power information. #### **LED Indicator** | LE | D Indicator | | Messages | |-----------|-------------|----------|---| | INV/AC | Croon | Solid On | Output is powered by utility in Line mode. | | INV/AC | Green | Flashing | Output is powered by battery or PV in battery mode. | | CHG | CUC | | Battery is fully charged. | | СПО | Green | Flashing | Battery is charging. | | FAULT Red | | Solid On | Fault occurs in the inverter. | | FAULI | Red | Flashing | Warning condition occurs in the inverter. | #### **Function Keys** | Function Key | | Description | |--------------|-------|--| | • | ESC | To exit setting mode | | ^ | UP | To go to previous selection | | ~ | DOWN | To go to next selection | | 4 | ENTER | To confirm the selection in setting mode or enter setting mode | ## **LCD Display Icons** | Icon | Function Description | | | | | | |--|--|--|--|--|--|--| | Input Source Information | | | | | | | | AC INPUT | Indicates the AC information | | | | | | | PV INPUT | Indicates the SOLAR information | | | | | | | PV AC INPUT HZ Add KWH VA°C | Indicates input voltage, input voltage, solar voltage | | | | | | | Output Inform | tion | | | | | | | LOAD OUTPUT HZ VA% KWH Kbps | Indicates output voltage, output frequency, load percentage,
VA in load, load watts and discharge current | | | | | | | Battery Inform | ation | | | | | | | ⚠ BATTERY 🌣 °CL %M VAH MWH | | | | | | | | _ | The battery capacity status is 0-10%, 10-30%, 30-50%, 50-70%, 70-90% and 90~ 100% | | | | | | | 0%~10% 10%~30% 30%~50% 50%~70% 70%~90% 90%~1 | | | | | | | | | | | | | | | | Load Information | | | | | | | | |---|---|-------------------------------|---------|---------|----------|--|--| | OVER | Indicates overload | | | | | | | | | Indicates load | | | | | | | | | 0%~25% | 25%~45% | 45%~65% | 65%~85% | 85%~100% | | | | | | | | | | | | | Mode Operatio | n Informati | on | | | | | | | ************************************** | Indicates u | Indicates unit connects to PV | | | | | | | 1/4 | Indicates unit connects to AC | | | | | | | | MPPT | Indicates MPPT | | | | | | | | DC DC | Indicates the DC/DC inverter circuit is working | | | | | | | | DC AC | Indicates the DC/AC inverter circuit is working | | | | | | | | Buzzer Information | | | | | | | | | Image: Control of the | Indicates buzzer on | | | | | | | | Щ× | Indicates buzzer off | | | | | | | ## **LCD Setting** After pressing and holding ENTER button for 3 seconds, the unit will enter setting mode. Press "UP" or "DOWN" button to select setting programs. And then, press "ENTER" button to confirm the selection or ESC button to exit. #### **Setting Programs:** | Program | Description | Selectable option | | | |---------|---|-----------------------|---|--| | | | Utility first | Utility will provide power to the loads as first priority. Solar and battery energy will provide power to the loads only when utility power is not available. | | | 01 | Output source priority: To configure load power source priority | Solar first (default) | Solar energy provides power to the loads as first priority. If solar energy is not sufficient to power all connected loads, utility will supply power to the loads at the same time. Battery provides power to the loads only when any one condition happens: - Solar energy and utility is not available. - Solar energy is not sufficient and utility is not available. | | | | | SBU priority | Solar energy provides power to the loads as first priority. If solar energy is not sufficient to power all connected loads, battery energy will supply power to the loads at the same time. Utility provides power to the loads only when battery voltage drops to either low-level warning voltage or the setting point in program 12. | | | | Maximum charging current:
To configure total charging | 02 10 ^ | 02 <u>20^</u> | | | 02 | current for solar and utility chargers. (Max. charging current = utility charging current + | 02 <u>30 v</u> | 02 40^ | | | | solar charging current) | 02 <u>50^</u> | 60A (default) | | | | | 12 | | | | | | 02 _ 70^ | 02 80 * | |----|---|---------------------------|---| | 02 | | 02 <u>90^</u> | 02 100 * | | | | 02 <u> 0</u> | 02 1201 | | | | 02 130^ | 02 <u> 40^</u> | | | | 02 <u>ISO^</u> | 02 <u>160^</u> | | 02 | 16 insulation | Appliances (default) | If selected, acceptable AC input voltage range will be within 90-280VAC. | | 03 | AC input voltage range | 03 <u>UPS</u> | If selected, acceptable AC input voltage range will be within 170-280VAC. | | | | AGM (default) | Flooded FLd | | 05 | Battery type | User-Defined USE | If "User-Defined" is selected,
battery charge voltage and low DC
cut-off voltage can be set up in
program 26, 27 and 29. | | 06 | Auto restart when overload occurs | Restart disable (default) | Restart enable | | 07 | Auto restart when over temperature occurs | Restart disable (default) | Restart enable | | 09 | Output frequency | 50Hz (default) | 60Hz
09 60 Hz | | 10 | Output voltage | 10 220° | 230V (default) 10 230v | | | . , | 240V
10 240° | 100 | | 44 | Maximum utility charging current | 11 <u>28</u> | 10A
 | | 11 | Note: If setting value in
program 02 is smaller than
that in program in 11, the
inverter will apply charging | ^{20A} | 30A (default) | | | current from program 02 for | 40A | 50A | |----|---|--------------------------------|------------------------| | | utility charger. | 11 <u>408</u> | 11 <u>508</u> | | | | 60A
11_60R | | | | | 80A
 | 90A | | | | 100A
 | 110A
 | | | | 120A
 | 130A
 | | | | 140A
 | <u> </u> | | | | Available options in 7.2KW/8.2 | KW/10.2KW model: | | | | 15 44 | 12 45 | | 12 | Setting voltage point back
to utility source when
selecting "SBU priority" or | 46V (default) | 47V
 2 | | | "Solar first" in program 01. | 48V
12 <u>48V</u> | 49V
12 <u>49v</u> | | | | 12 <u>SOV</u> | 12 <u>Sati</u> lv | | | | Available options in 7.2KW/8.2 | | | | | Battery fully charged | 48V
13 <u>480</u> v | | 13 | Setting voltage point back to battery mode when | 49V
13_4 <u>90</u> v | 13 <u>500</u> 0° | | | selecting "SBU priority" or "Solar first" in program 01. | 13 <u>5 10 v</u> | 13 <u>520</u> | | | | 13 <u>530</u> | 54V (default) | | | · | | | | | | T | T . | | |----|--|--|---|--| | | | 55V | 56V | | | | | 13 <u> \$50</u> | 13 <u>55</u> 0° | | | | | 57V | 58V | | | | | 13 <u>5~</u> | 13 <u>580</u> | | | | | If this inverter/charger is work charger source can be progra | ing in Line, Standby or Fault mode,
mmed as below: | | | | Charger source priority: | battery at the same time. Only Solar Solar energy will be the onl charger source no matter u | Solar energy and utility will charge battery at the same time. | | | 16 | To configure charger source priority | Only Solar | Solar energy will be the only charger source no matter utility is available or not. | | | | | If this inverter/charger is working in Battery mode or Power saving mode, only solar energy can charge battery. Solar energy will charge battery if it's available and sufficient. | | | | 18 | Alarm control | Alarm on (default) | 18 <u>60</u> F | | | 19 | Auto return to default
display screen | Return to default display screen (default) | If selected, no matter how users switch display screen, it will automatically return to default display screen (Input voltage /output voltage) after no button is pressed for 1 minute. | | | | | Stay at latest screen | If selected, the display screen will stay at latest screen user finally switches. | | | 20 | Backlight control | Backlight on (default) | Backlight off 20 LOF | | | 22 | Beeps while primary source is interrupted | Alarm on (default) | Alarm off POF | |----|--|--|---| | 23 | Overload bypass: When enabled, the unit will transfer to line mode if overload occurs in battery mode. | Bypass disable (default) | Bypass enable | | 25 | Record Fault code | Record enable (default) | Record disable 25 Fd5 | | 26 | Bulk charging voltage
(C.V voltage) | | rogram 5, this program can be set
VV to 61.0V for 7.2KW/8.2KW/10.2KW | | 27 | Floating charging voltage | | rogram 5, this program can be set
V to 61.0V for 7.2KW/8.2KW/10.2KW | | 29 | Low DC cut-off voltage | up. Setting range is from 40.0 model. Increment of each clic | rogram 5, this program can be set by to 48.0V for 7.2KW/8.2KW/10.2KW k is 0.1V. Low DC cut-off voltage will tter what percentage of load is | | 30 | Battery equalization | Battery equalization 30 EEN | Battery equalization disable (default) | |----|---|---|---| | | | program can be set up. | ned" is selected in program 05, this | | | | 7.2KW/8.2KW/10.2KWd | efault setting: 58.4V | | 31 | Battery equalization voltage | Setting range is from 48.0 model. Increment of each | OV to 61.0V for 7.2KW/8.2KW/10.2KW
n click is 0.1V. | | 33 | Battery equalized time | 60min (default) | Setting range is from 5min to 900min. Increment of each click is 5min. | | 34 | Battery equalized timeout | 120min (default) | Setting range is from 5min to 900 min. Increment of each click is 5 min. | | 35 | Equalization interval | 30days (default) | Setting range is from 0 to 90 days. Increment of each click is 1 day | | | | Benable REN | Disable (default) 36 <u>AdS</u> | | 36 | Equalization activated immediately | be set up. If "Enable" is s battery equalization imme "E" If "Disable" is seleuntil next activated equalisetting. At this time, | enabled in program 30, this program can elected in this program, it's to activate ediately and LCD main page will shows cted, it will cancel equalization function zation time arrives based on program 35 "will not be shown in LCD main page. | | 91 | On/Off control for RGB LED It's necessary to enable this setting to activate RGB LED lighting function. | SI LEN | SI LdS | | 94 | RGB LED effect | Solid on(default) | Breathing 94 63E | | 94 | NGD LED GIIECT | Scrolling 94_5[a] | scrolling 1 SCI | | | | <u> </u> | <u> </u> | |----|--|---|--| | | Data Presentation of data color | Energy source(Grid-PV-Battery) (default) 95EUS | If selected,the LED color will be background color setting in #96 in AC mode.If PV power is active,the LED color will be data color setting in #97.If the remaining status,the LED color will be set in #98. | | 95 | Energy source(Grid-PV-
Battery)and battery
charge/discharge status. | Battery charge/discharge status | If selected, the LED color will be background color setting in #96 in battery charging status. The LED color will be data color setting in #97 in battery discharging status. | | | | 96 <u>56L</u> | 96 <u>6</u> 60 | | 96 | Data 1 color of RGB LED A Invalid when RGB LED effect is set to"breathing". | 96 <u>UdE</u> | 96 <u>46</u> L | | | | 96 <u>PU3</u> | | | | | 97 <u>56L</u> | 97 <u>8LU</u> | | 97 | Data 2 color of RGB LED ▲ Invalid when RGB LED effect is set to"breathing". | 97_UdE_ | Yellow 97 - 4EL_ | | | | Purple 97 PU3 | | | | | 98 <u>56L</u> | 98 <u>6</u> 60 | | 98 | Data 3 color of RGB LED ▲ Invalid when RGB LED effect is set to"breathing". | 98 <u>UdE</u> | Yellow | | | | 98 <u>PU3</u> | | ## **Display Settings** By pressing the "UP" or "DOWN", the LCD display information will be switched in turn. | Icon | Parameter Interface | LCD Display | |------|---|---| | 1 | PV voltage=200V
PV current=3.0A
PV power=0.6KW | 200 _v 30 _A 06 _{KW} | | 2 | Battery voltage=49.1V
Charging current=14A
Charging power=0.6KW | BATTERY H9.1, 14 0.6 kw | | 3 | AC input frequency=50.0Hz
AC input voltage=230V | AC INPUT 50.0 Hz 230 v | | 4 | AC output voltage=230V
AC output frequency=50.0Hz | 230 × 500 Hz | | Icon | Parameter Interface | LCD Display | |----------|--|--------------| | ⑤ | Load percentage=0%
Load power=0KW | LOAD KW | | 6 | Discharging current=10A
Battery voltage=49.1V
Battery capacity=79% | BATTERY 79 % | | 7 | Accident Details
(Refer to Fault Reference Code) | ÊBY | ## **Battery Equalization Description** Equalization function is added into charge controller. It reverses the buildup of negative chemical effects like stratification, a condition where acid concentration is greater at the bottom of the battery than at the top. Equalization also helps to remove sulfate crystals that might have built up on the plates. If left unchecked, this condition, called sulfation, will reduce the overall capacity of the battery. Therefore, it's recommended to equalize battery periodically. #### • How to Apply Equalization Function You must enable battery equalization function in monitoring LCD setting program 30 first. Then, you may apply this function in device by either one of following methods: - 1. Setting equalization interval in program 35. - 2. Active equalization immediately in program 36. #### • When to Equalize In float stage, when the setting equalization interval (battery equalization cycle) is arrived, or equalization is active immediately, the controller will start to enter Equalize stage. #### Equalize charging time and timeout In Equalize stage, the controller will supply power to charge battery as much as possible until battery voltage raises to battery equalization voltage. Then, constant-voltage regulation is applied to maintain battery voltage at the battery equalization voltage. The battery will remain in the Equalize stage until setting battery equalized time is arrived. However, in Equalize stage, when battery equalized time is expired and battery voltage doesn't rise to battery equalization voltage point, the charge controller will extend the battery equalized time until battery voltage achieves battery equalization voltage. If battery voltage is still lower than battery equalization voltage when battery equalized timeout setting is over, the charge controller will stop equalization and return to float stage. ## **Fault Reference Code** | Fault Code | Fault Event | Icon on | |------------|--|---------| | E01 | Fan is locked when inverter is off. | EO 1 | | E02 | Over temperature | 503 | | E03 | Battery voltage is too high | E03 | | E04 | Battery voltage is too low | E04 | | E05 | Output short circuited or over temperature is detected by internal converter components. | E05 | | E06 | Output voltage is too high. | E06 | | E07 | Overload time out | E07 | | E08 | Bus voltage is too high | 803 | | E09 | Bus soft start failed | E09 | | E10 | Output power derating | E10 | | E15 | PV energy is low. | EIS | | E51 | Over current or surge | ESI | | E52 | Bus voltage is too low | E52 | | E53 | Inverter soft start failed | ES3 | | E55 | Over DC voltage in AC output | ESS | | E57 | Current sensor failed | 257 | | E58 | Output voltage is too low | E58 | | E59 | PV voltage is over limitation | E59 | | bP | Battery is not connected | ЪР≜ | | Eq | Battery equalization | E9 | ## **SPECIFICATIONS** Table 1 Line Mode Specifications | INVERTER MODEL | 7.2KW 8.2KW 10.2KW | | | | | |---|---|---|-------------|--|--| | Input Voltage Waveform | Sinusoidal (utility or generator) | | | | | | Nominal Input Voltage | | 230Vac | | | | | Low Loss Voltage | 170Vac±7V (UPS); | | | | | | | | 90Vac±7V (Appliances)
180Vac±7V (UPS); | 1 | | | | Low Loss Return Voltage | | 100Vac±7V (Appliances |) | | | | High Loss Voltage | | 280Vac±7V | | | | | High Loss Return Voltage | | 270Vac±7V | | | | | Max AC Input Voltage | | 300Vac | | | | | Nominal Input Frequency | 50 | Hz / 60Hz (Auto detection | on) | | | | Low Loss Frequency | 40±1Hz | | | | | | Low Loss Return Frequency | w Loss Return Frequency 42±1H | | | | | | High Loss Frequency | 65±1Hz | | | | | | High Loss Return Frequency | | 63±1Hz | | | | | Output Short Circuit Protection | | Circuit Breaker | | | | | Efficiency (Line Mode) | >95% (R | ated R load, battery full | l charged) | | | | Transfer Time | 2 | 10ms typical (UPS);
20ms typical (Appliances | 5) | | | | Output power derating: When AC input voltage drops to 170V, the output power will be derated. | Output Power Rated Power 50% Power 90V 170V 280V Input Voltage | | | | | Table 2 Inverter Mode Specifications | <u>'</u> | | _ | | | |-------------------------------|------------------------------|---------------------|--------|--| | INVERTER MODEL | 7.2KW | 8.2KW | 10.2KW | | | Rated Output Power | 7.2KW | 8.2KW | 10.2KW | | | Output Voltage Waveform | Pure Sine Wave | | | | | Output Voltage Regulation | 230Vac±5% | | | | | Output Frequency | | 50Hz | | | | Peak Efficiency | | 93% | | | | Overload Protection | 3s@≥150° | % load; 5s@101%~150 | % load | | | Surge Capacity | 2* rated power for 5 seconds | | | | | Nominal DC Input Voltage | 48Vdc | | | | | Cold Start Voltage | 46.0Vdc | | | | | Low DC Warning Voltage | | | | | | @ load < 50% | 44.0Vdc | | | | | @ load ≥ 50% | 42.0Vdc | | | | | Low DC Warning Return Voltage | | | | | | @ load < 50% | | 45.0Vdc | | | | @ load ≥ 50% | | 44.0Vdc | | | | Low DC Cut-off Voltage | | | | | | @ load < 50% | | 41.0Vdc | | | | @ load ≥ 50% | 40.0Vdc | | | | | High DC Recovery Voltage | 62Vdc | | | | | High DC Cut-off Voltage | 63Vdc | | | | | No Load Power Consumption | 60W 70W 75W | | | | Table 3 Two Load Output Power | INVERTER MODEL | 7.2KW | 8.2KW | 10.2KW | |------------------------------------|-------|-------|--------| | Full Load | 7200W | 8200W | 10200W | | Maximum Main Load | 7200W | 8200W | 10200W | | Maximum Second Load(battery model) | 2400W | 2733W | 3400W | | Main Load Cut Off Voltage | 44VDC | | | | Main Load Return Voltage | 52VDC | | | Table 4 Charge Mode Specifications | Utility Charging Mode | | | | | |-----------------------------------|------------------------------|---|--|---| | INVE | RTER MODEL | 7.2KW | 8.2KW | 10.2KW | | Charging Algor | rithm | 3-Step | | | | AC Charging C | urrent (Max) | 120Amp 140Amp 140Amp | | | | Bulk Charging | Flooded Battery | | 58.4 | · | | Voltage | AGM / Gel Battery | 56.4 | | | | Floating Charg | ing Voltage | 54Vdc | | | | Charging Curv | e | 2.4min (J. Omna) 2.2min Sullk (Constant Curre | R-50*Th subtree Mining audientalies Absorption (Constant Voltage) | Volteza 19056 19066 19066 Maintenance (Floating) Time | | MPPT Solar Charging Mode | | | | | | INVERTER MOI | DEL | 7.2KW | 8.2KW | 10.2KW | | Max. PV Array | Power | 8200W 10200W | | | | Nominal PV Vo | ltage | 360Vdc | | | | PV Array MPPT | Voltage Range | 90Vdc~500Vdc | | | | Max. PV Array | Open Circuit Voltage | 500Vdc | | | | Max Charging (
(AC charger plu | Current
us solar charger) | 140Amp 160Amp 160Amp | | 160Amp | #### Table 5 Grid-Tie Operation | INVERTER MODEL | 7.2KW | 8.2KW | 10.2KW | |---------------------------------------|---------------------|-------|--------| | Nominal Output Voltage | 220/230/240 VAC | | | | Feed-in Grid Voltage Range | 195~253VA C | | | | Feed-in Grid Frequency Range | 49~51±1Hz/59~61±1Hz | | | | Nominal Output Current | 31.3A 35.6A 44.3A | | | | Power Factor Range | >0.99 | | | | Maximum Conversion Efficiency (DC/AC) | 98% | | | ## Table 6 General Specifications | INVERTER MODEL | 7.2KW | 8.2KW | 10.2KW | |-----------------------------|--|-------|--------| | Safety Certification | CE | | | | Operating Temperature Range | -10°C to 50°C | | | | Storage temperature | -15°C~ 60°C | | | | Humidity | 5% to 95% Relative Humidity (Non-condensing) | | | | Dimension (D*W*H), mm | 561x405x151 | | | | Net Weight, kg | 13.1 | 14.2 | 14.5 | ## **TROUBLE SHOOTING** | Problem | LCD/LED/Buzzer | Explanation / Possible cause | What to do | | |---|---|---|--|--| | Unit shuts down automatically during startup process. | LCD/LEDs and buzzer will be active for 3 seconds and then complete off. | The battery voltage is too low (<1.91V/Cell) | Re-charge battery. Replace battery. | | | No response after power on. | No indication. | 1. The battery voltage is far too low. (<1.4V/Cell) 2. Internal fuse tripped. | Contact repair center for
replacing the fuse. Re-charge battery. Replace battery. | | | | No indication. | Input protector is tripped | Check if AC breaker is tripped and AC wiring is connected well. | | | Mains exist but the unit works in battery mode. | No indication. | Insufficient quality of AC power.
(Shore or Generator) | 1. Check if AC wires are too thin and/or too long. 2. Check if generator (if applied) is working well or if input voltage range setting is correct. (UPS♠ Appliance) | | | | No indication. | Set "Solar First" as the priority of output source. | Change output source priority to Utility first. | | | When the unit is turned on, internal relay is switched on and off repeatedly. | LCD display and LEDs are flashing | Battery is disconnected. | Check if battery wires are connected well. | | | | Fault code 07 | Overload error. The inverter is overload 110% and time is up. | Reduce the connected load by switching off some equipment. | | | | Fault code 05 | Output short circuited. | Check if wiring is connected well and remove abnormal load. | | | | Fault code 02 | Temperature of internal converter component is over 120°C. Internal temperature of inverter component is over 100°C. | Check whether the air flow of
the unit is blocked or whether
the ambient temperature is
too high. | | | | | Battery is over-charged. | Return to repair center. | | | Buzzer beeps
continuously and
red LED is on. | Fault code 03 | The battery voltage is too high. | Check if spec and quantity of batteries are meet requirements. | | | | Fault code 01 | Fan fault | Replace the fan. | | | | Fault code 06/58 | Output abnormal (Inverter voltage
below than 190Vac or is higher
than 260Vac) | Reduce the connected load. Return to repair center | | | | Fault code
08/09/53/57 | Internal components failed. | Return to repair center. | | | | Fault code 51 | Over current or surge. | Restart the unit, if the error happens again, please return to repair center. | | | | Fault code 52 | Bus voltage is too low. | | | | | Fault code 55 | Output voltage is unbalanced. | | | ## **Appendix: Approximate Back-up Time Table** | Model | Load (W) | Backup Time @ 48Vdc 100Ah (min) | Backup Time @ 48Vdc 200Ah (min) | |------------------|----------|---------------------------------|---------------------------------| | | 500 | 613 | 1288 | | | 1000 | 268 | 613 | | | 1500 | 158 | 402 | | | 2000 | 111 | 271 | | | 2500 | 90 | 215 | | 7.2KW/
8.2KW/ | 3200 | 76 | 182 | | 10.2KW | 3500 | 65 | 141 | | | 4000 | 50 | 112 | | | 4500 | 44 | 100 | | | 5000 | 40 | 90 | | | 6200 | 36 | 80 | | | 7200 | 32 | 70 | | | 8200 | 28 | 60 | | | 9200 | 24 | 50 | | | 10200 | 20 | 40 | #### Note: - 1 .Backup time depends on the quality of the battery, age of battery and type of battery.Specifications of batteries may vary depending on different manufacturers. 2.The final interpretation right of this product belongs to the company.